- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Broomell, Stephen_B (1)
-
Cavagnaro, Daniel_R (1)
-
Sloman, Sabina_J (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Adaptive design optimization (ADO) is a state-of-the-art technique for experimental design (Cavagnaro et al., 2010). ADO dynamically identifies stimuli that, in expectation, yield the most information about a hypothetical construct of interest (e.g., parameters of a cognitive model). To calculate this expectation, ADO leverages the modeler’s existing knowledge, specified in the form of a prior distribution.Informativepriors align with the distribution of the focal construct in the participant population. This alignment is assumed by ADO’s internal assessment of expected information gain. If the prior is insteadmisinformative, i.e., does not align with the participant population, ADO’s estimates of expected information gain could be inaccurate. In many cases, the true distribution that characterizes the participant population is unknown, and experimenters rely on heuristics in their choice of prior and without an understanding of how this choice affects ADO’s behavior. Our work introduces a mathematical framework that facilitates investigation of the consequences of the choice of prior distribution on the efficiency of experiments designed using ADO. Through theoretical and empirical results, we show that, in the context ofprior misinformation, measures of expected information gain are distinct from the correctness of the corresponding inference. Through a series of simulation experiments, we show that, in the case of parameter estimation, ADO nevertheless outperforms other design methods. Conversely, in the case of model selection, misinformative priors can lead inference to favor the wrong model, and rather than mitigating this pitfall, ADO exacerbates it.more » « less
An official website of the United States government
